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A B S T R A C T

Accurate and automatic segmentation of individual cell instances in microscopy images is a vital step for
quantifying the cellular attributes, which can subsequently lead to new discoveries in biomedical research.
In recent years, data-driven deep learning techniques have shown promising results in this task. Despite the
success of these techniques, many fail to accurately segment cells in microscopy images with high cell density
and low signal-to-noise ratio. In this paper, we propose a novel 3D cell segmentation approach DeepSeeded,
a cascaded deep learning architecture that estimates seeds for a classical seeded watershed segmentation. The
cascaded architecture enhances the cell interior and border information using Euclidean distance transforms
and detects the cell seeds by performing voxel-wise classification. The data-driven seed estimation process
proposed here allows segmenting touching cell instances from a dense, intensity-inhomogeneous microscopy
image volume. We demonstrate the performance of the proposed method in segmenting 3D microscopy images
of a particularly dense cell population called bacterial biofilms. Experimental results on synthetic and two real
biofilm datasets suggest that the proposed method leads to superior segmentation results when compared to
state-of-the-art deep learning methods and a classical method.
1. Introduction

Cell segmentation from microscopy is an essential image process-
ing task that facilitates the understanding of the characteristics of a
cellular population. Given a segmentation, the microscopist is able to
localize and track cells over time, detect cell division and growth rates,
trace cell lineages, and extract volume, shape, and other representative
information. These quantitative details can provide insights regarding
cellular health and cellular response to certain drugs and thus aid
the drug development process (Kar et al., 2022; Vicar et al., 2019).
While many automatic segmentation approaches have been developed
over the years, cell segmentation still remains challenging in certain
conditions, such as low signal-to-noise ratio, intra-cellular intensity
inhomogeneity, and high cell density. These conditions are exacerbated
in 3D imaging.

There exist many classical approaches for cell segmentation, includ-
ing thresholding methods followed by pixel-grouping via connected
components (Phoulady, Goldgof, Hall, & Mouton, 2016; Shen et al.,
2018), morphological methods based on the watershed transform (Atta-
Fosu et al., 2016; Beucher & Meyer, 2018; Cheng et al., 2008), geo-
metric active contour models (Acton & Ray, 2009; Mukherjee & Acton,
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2014), and methods using graph cuts (Boykov & Funka-Lea, 2006; He
et al., 2015). Among these approaches, thresholding methods often
suffer from over-segmentation or under-segmentation errors that result
in broken cells, rough region boundaries, and clumps of touching cells.
Unlike thresholding, active contour models are able to address the
intensity inhomogeneity problems and provide smooth segmentation
results; however, they face difficulty in separating touching cells in
the absence of an initial contour for each cell. The graph cut and
watershed-based methods are more suitable approaches when dealing
with densely packed overlapping cells. The graph cut techniques first
require an initial detection or coarse segmentation of the cell regions
from the background and then attempt to split the touching cells into
isolated cells by cutting graphs based on conditions such as minimum
similarity of node features (Wang, Zhang, Zhang, Wang, Gahlmann, &
Acton, 2021). While such graph cut methods can improve touching cell
separation, their performance can degrade if the initial detection stage
fails to detect cells in the regions of heterogeneous brightness. Also,
the iterative graph optimization in 3D for large input volumes becomes
computationally expensive. In contrast, marker-controlled or seeded
vailable online 14 October 2023
957-4174/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.eswa.2023.122094
Received 17 February 2023; Received in revised form 8 October 2023; Accepted 8
 October 2023

https://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:tt4ua@virginia.edu
mailto:yw9et@virginia.edu
mailto:ag5vu@virginia.edu
mailto:acton@virginia.edu
https://doi.org/10.1016/j.eswa.2023.122094
https://doi.org/10.1016/j.eswa.2023.122094
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2023.122094&domain=pdf


Expert Systems With Applications 238 (2024) 122094T.T. Toma et al.
watershed methods feature reduced computation and also require tun-
ing a smaller number of hyperparameters compared to graph cuts
and active contour methods. However, accurate cell seed estimation is
also very challenging in low-contrast and densely packed cell images.
Precise seed generation demarcates the desired regions in the image
and hence is crucial to successful segmentation by the seeded watershed
segmentation (Soille et al., 1999). Accurate estimation of seed markers
helps avoid over-segmentation and under-segmentation errors, enhanc-
ing the algorithm’s ability to handle noise and improving the overall
robustness (Meyer & Beucher, 1990). Various approaches have been
attempted for extracting these seeds, such as the h-minima (or maxima)
based techniques (Jung & Kim, 2010; Koyuncu, Akhan, Ersahin, Cetin-
Atalay, & Gunduz-Demir, 2016) and multilevel thresholding (Salem,
Sobhy, & El Dosoky, 2016; Smołka, 2006; Xiong, Zhang, Li, & Zhang,
2020). Seed estimation following these approaches requires tuning
specific thresholds or hyperparameters that are not adaptive to new
data.

Over the recent years, various data-driven deep learning techniques
have been proposed for cell segmentation. One widely adopted ap-
proach is first to perform pixel-wise segmentation (also known as
semantic segmentation) using a deep network, e.g., a U-Net (Caicedo
et al., 2019; Çiçek, Abdulkadir, Lienkamp, Brox, & Ronneberger, 2016;
Prangemeier, Wildner, Françani, Reich, & Koeppl, 2022; Ronneberger,
Fischer, & Brox, 2015), and later group pixels into isolated cell in-
stances using classical algorithms, such as watershed or graph parti-
tioning techniques (Eschweiler et al., 2019; Wang et al., 2022; Wolny,
Cerrone, Vijayan, Tofanelli, Barro, Louveaux, Wenzl, Strauss, Wilson-
Sánchez, Lymbouridou, et al., 2020; Zhang et al., 2020). The U-Net-
based pixel-wise segmentation directly performed on low-contrast in-
put images is not very effective in detecting the subtle boundary
changes between touching cells, often causing inaccurate classification
of the boundary pixels. Moreover, with U-Net results, the later post-
processing stage involves various tunable hyper-parameters and hence
cannot resolve the touching-cell problem in a data-adaptive fashion.
In recent developments, attention-based transformer encoders have
also been employed within the U-Net architecture for pixel-wise seg-
mentation tasks (Chen et al., 2021; Hatamizadeh, Nath, et al., 2022;
Hatamizadeh, Tang, et al., 2022). Another notable approach, known
as Cellpose (Stringer, Wang, Michaelos, & Pachitariu, 2021), estimates
spatial gradient maps from the input image and later performs gradient
tracking to achieve final instance-wise segmentation. However, such a
gradient feature-based method can be easily affected by the noise and
heterogeneous illumination present in the input.

Furthermore, various methods have been proposed to perform end-
to-end instance-wise segmentation. The region-based convolutional
neural networks, namely Mask-RCNN and its variants (Chen & Zhang,
2021; He, Gkioxari, Dollár, & Girshick, 2017; Prangemeier et al.,
2022; Zhao et al., 2018) are widely used instance-wise segmentation
approach. The original Mask R-CNN method (He et al., 2017) consists
of several key components: a CNN backbone, a region proposal network
(RPN) with non-maximum suppression, a RoIAlign layer, and individ-
ual prediction heads for instance-wise segmentation. These methods
output a bounding box, classification label, and pixel/voxel-wise mask
per detected instance. While the Mask-RCNN-based methods have
demonstrated significant performance gain in many applications, these
methods struggle in situations with many touching/overlapping objects
in space due to greedy non-maximum suppression post-processing, as
mentioned and demonstrated in the literature (Abeyrathna, Rauniyar,
Sani, & Huang, 2022; Ilyas et al., 2022; Schmidt, Weigert, Broaddus, &
Myers, 2018).

More recently, transformer-based end-to-end instance-wise detec-
tion and segmentation methods have been proposed (Carion et al.,
2020; Prangemeier, Reich, & Koeppl, 2020). These approaches em-
ploy a combination of transformer encoder–decoder, CNN backbone
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encoder, and CNN decoder to produce bounding box predictions, class
labels, and masks for detected instances. These methods have demon-
strated their effectiveness in 2D object detection and cell segmentation
tasks. However, their suitability for predicting separate bounding boxes
for individual instances in dense 3D cell environments is an area that
requires further exploration.

In addition, several techniques have been suggested with a specific
emphasis on segmenting the cellular soma regions from microscopy
images of neuronal cells, for instance, approaches such as the scale
fusion segmentation network and the structure-guided segmentation
network (Wei, Liu, Liu, Wang, & Meijering, 2022; Yang, Liu, Wang,
Zhang, & Meijering, 2021). Other soma segmentation approaches in-
clude a ray-shooting model combined with Long Short-Term Memory
(LSTM)-based network (Jiang, Chen, Liu, Wang, & Meijering, 2020),
and 3D U-Net-based approaches (Li & Shen, 2019; Li et al., 2021).

Recently cell segmentation methods that incorporate the concept
of CNN-based distance map prediction, followed by seeded watershed
segmentation, have demonstrated great success in segmenting images
of densely packed cell populations. Such methods train a convolutional
neural network (CNN) to estimate a cell distance map from a low-
contrast input image (Li, Wang, Tang, Fan, & Yu, 2019; Wang et al.,
2019). In this cell distance map, the cell interior pixels are more
enhanced than the boundary pixels. However, in the case of many
touching cells, an additional map representing the cell border infor-
mation was found to be more effective. Scherr, Löffler, Böhland, and
Mikut (2020) proposed a neighbor distance map in addition to the cell
distance map, which utilizes not only touching cells but also close cells
in the CNN training process. Similarly, Zhang et al. (2022) proposed a
CNN-based dual distance map prediction approach to estimate a more
effective cell border map. Both these approaches perform the final
segmentation task by exploiting the seeded watershed algorithm, where
the seeds are obtained by thresholding the estimated maps from the
CNN. While these methods can improve cell segmentation accuracy by
enhancing the cell interior and border from the low-contrast input, the
subsequent seed selection stage for the watershed-based segmentation
involves tuning various parameters, such as intensity, size, or shape-
based thresholding parameters. These thresholds may not be readily
applicable to other datasets. Furthermore, in the presence of hetero-
geneity of intensity, size, or shape among the cells, the choice of global
image thresholds may not be appropriate for extracting the cell seeds
accurately.

The proposed method, DeepSeeded, overcomes several limitations
of existing solutions. Firstly, we utilize a CNN for the image regres-
sion task, estimating two distance maps from the low-contrast input
image stack. However, compared to existing distance map-based so-
lutions (Scherr et al., 2020; Zhang et al., 2022), we incorporate an
effective distance map representation to facilitate the separation of
touching cells. Additionally, we propose a specialized loss function to
enhance the quality of distance map estimations. Secondly, we leverage
another CNN for voxel-wise classification (also known as semantic
segmentation), which automatically estimates the seeds required for
the seeded watershed algorithm. This additional network eliminates the
need for sub-optimal thresholding-based seed estimation. A comprehen-
sive description of the contributions of the proposed method is provided
in Section 1.1.

We demonstrate the performance of the proposed method in the
segmentation of bacteria cells from 3D microscopy images of densely
packed biofilms. Bacterial biofilms are complex biological systems that
play critical roles in infectious diseases, as well as in many indus-
trial and ecological processes (Bjarnsholt et al., 2013; Chaturvedi &
Verma, 2016; Drescher, Shen, Bassler, & Stone, 2013; Hall-Stoodley,
Costerton, & Stoodley, 2004; Prince, 2002; Schultz, Bendick, Holm, &
Hertel, 2011). Segmentation of individual instances of bacteria from
a biofilm image is challenging due to the presence of many touching
cells and due to intra-cellular intensity inhomogeneity, which lead to

under-segmentation and over-segmentation errors, respectively.
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Fig. 1. Overview of the DeepSeeded segmentation workflow. The input and output images demonstrated in this artwork correspond to a 2D slice of a 3D biofilm stack.
1.1. Our contribution

The main contributions of the proposed method are mentioned as
follows:

• We propose an automatic seed estimation approach for the seeded
watershed algorithm using a cascade of two deep networks, an
image regression network, and a voxel-wise image classification
network. Such an approach eliminates the need to tune any hyper-
parameters during the online/testing phase of the segmentation
workflow.

• We propose a novel cell border representation, the ‘border neigh-
bor distance map,’ to be learned by the regression network for
a precise estimation of the border voxels. Such a representation
is beneficial for separating touching cells in a densely packed
volume.

• We utilize a 3D multi-scale structural similarity index measure
(MS-SSIM) as a loss term in combination with an error-based loss
to train the regression network. Such a loss function formulation
ensures superior image quality of the cell interior and border
estimation maps.

This paper is organized as follows: Section 2 presents the theory of the
proposed approach. Section 3 includes details of the experimental setup
and dataset, evaluation metrics, and comparative methods. Experimen-
tal results are presented and discussed in Section 4. Finally, Section 5
offers concluding remarks. A number of symbols used in the paper are
listed in Table 1.
3

Table 1
Description of symbols.
Symbols Description

𝒙 Input 3D cell image
�̃�𝑐 Cell interior-enhanced image
�̃�𝑏 Cell border-enhanced image
�̃� Voxel-wise classified map
�̃�𝑙 Instance labeled segmentation
𝑇 Number of training samples
𝑁 Number of voxels in an image

2. Theory

The proposed segmentation approach is an instance-based segmen-
tation approach that labels every cell in the input image. The segmenta-
tion problem is formulated as finding the seeds of a classical watershed
algorithm using deep learning. An overview of the proposed approach
is demonstrated in Fig. 1.

2.1. Image regression network

Given a potentially low-contrast 3D microscopy image 𝒙, we pro-
duce two new 3D images, �̃�𝑐 and �̃�𝑏, where �̃�𝑐 represents a cell
interior-enhanced image and �̃�𝑏 represents a cell border-enhanced im-
age. We implemented a modified two-decoder version of the original
single-decoder 3D U-Net (Çiçek et al., 2016) to estimate these two
maps.
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Fig. 2. Qualitative comparison of cell distance map (CDM) and border distance map (BDM) between the proposed method and the competing methods. The maps in Figs. 2(c)–2(h)
correspond to the 2D slice in Fig. 2(b).
To train the network with groups containing one input and two
target images, the ground truth images for two targets {𝒙𝒄 ,𝒙𝒃} are
generated from a ground truth instance-labeled image 𝒙𝑙 of 𝒙 where
𝑙 = {0, 1,… , 𝐿} with 𝐿 cell instances and 0 as background. We refer
to 𝒙𝒄 and 𝒙𝒃 as ‘cell distance map’ and ‘border neighbor distance
map,’ respectively. The ‘cell distance map’ 𝒙𝒄 is computed from 𝒙𝑙 by
calculating the Euclidean distance transform for each of the 𝐿 cells
independently. To compute the ‘border neighbor distance map’ 𝒙𝒃, we
first find the border voxels of each cell, and then for each border voxel,
we compute the inverse normalized distance to the nearest neighbor
voxel. The detailed steps of computing 𝒙𝒄 and 𝒙𝒃 are provided in
Algorithms 1 and 2.

We propose a precise border map representation to be learned by a
regression network in contrast to representations in Scherr et al. (2020),
Zhang et al. (2022). In Scherr et al. (2020), a neighbor distance map is
computed pixel-wise for each cell from a ground-truth instance-labeled
image. The approach in Zhang et al. (2022) refines this representa-
tion by multiplying the neighbor distance map with a weight matrix
so that the boundary pixels/voxels are more enhanced than the cell
interior. The weight matrix is calculated by subtracting the cell distance
map from the binary mask. Although this representation enhances cell
boundaries, a percentage of cell-interior voxels can still be highlighted
in a cell border representation, especially in dense neighborhoods, such
as within a bacterial biofilm. Such a representation can mislead the
network into confusing the interior voxels with the border voxels. In
this paper, we propose a ‘border neighbor distance map’ that computes
the neighbor distance only for the border voxels of each cell. This
approach yields a sharper border representation. In Fig. 2, we qual-
itatively compare the ground-truth distance maps from the proposed
method with those in Scherr et al. (2020), Zhang et al. (2022). The
maps are computed in 3D from a ground truth instance-labeled image
of an 𝐸.𝑐𝑜𝑙𝑖-biofilm, shown in Fig. 2(a). We demonstrate the maps for a
particular 2D slice (Fig. 2(b)) of the image volume. From the figure, it is
evident that the border distance map of the proposed method captures
cell border information more effectively compared to the corresponding
maps from Scherr et al. (2020), Zhang et al. (2022). Also, it is seen that
the proposed cell distance map highlights the cell interior as effectively
as in Scherr et al. (2020).

We propose a hybrid loss function to train the regression network by
incorporating an image quality-based loss term in combination with the
error-based loss. The proposed loss function consists of multiscale SSIM
loss (MS-SSIM) and smooth L1 loss. While the smooth L1 loss minimizes
the error between the ground truth and prediction, the MS-SSIM loss
especially helps to maximize the image quality of the prediction with
4

respect to the ground truth. With 𝑇 number of training samples, our
loss term is the sum of the losses to estimate the two maps,

𝐿𝑜𝑠𝑠, 𝐿𝑅 = 1
𝑇

𝑇
∑

𝑡=1

[

𝐶𝑜𝑠𝑡(𝒙𝑐𝑡 , �̃�
𝑐
𝑡 ) + 𝐶𝑜𝑠𝑡(𝒙𝑏𝑡 , �̃�

𝑏
𝑡 )
]

= 1
𝑇

𝑇
∑

𝑡=1
[𝛼𝐶SL1(𝒙𝑐𝑡 , �̃�

𝑐
𝑡 ) + (1 − 𝛼)𝐶MS-SSIM(𝒙𝑐𝑡 , �̃�

𝑐
𝑡 )

+ 𝛼𝐶SL1(𝒙𝑏𝑡 , �̃�
𝑏
𝑡 ) + (1 − 𝛼)𝐶MS-SSIM(𝒙𝑏𝑡 , �̃�

𝑏
𝑡 )]

(1)

In Eq. (1), 𝐶SL1 refers to smooth L1 cost term and 𝐶MS-SSIM represents
MS-SSIM cost term. The parameter 𝛼 is used to control the balance
between these two terms. The smooth L1 cost term is further defined
in (2), where 𝑁 is the number of voxels in the image. The terms �̃�(𝑛)
and 𝒙(𝑛) correspond to the predicted distance map and the ground truth
distance map values, respectively, at the 𝑛th voxel.

𝐶SL1(𝒙, �̃�) =
1
𝑁

𝑁
∑

𝑛=1
SL1(𝑛) (2)

SL1(𝑛) =
{

0.5 [𝒙(𝑛) − �̃�(𝑛)]2, if |𝒙(𝑛) − �̃�(𝑛)| < 1
|𝒙(𝑛) − �̃�(𝑛)| − 0.5, otherwise

Since MS-SSIM is an image quality-based measure that we aim to max-
imize, the MS-SSIM cost term is computed to minimize the following
term,

𝐶MS-SSIM(𝒙, �̃�) = 1
𝑁

𝑁
∑

𝑛=1
[1 − MS-SSIM(𝑛)] (3)

The computation of MS-SSIM involves computing the SSIM metric at
multiple scales/resolutions (Wang, Simoncelli, & Bovik, 2003). The
SSIM for each pixel/voxel 𝑛 is defined as follows,

SSIM(𝑛) =
2𝜇𝒙𝜇�̃� + 𝐶1

𝜇2
𝒙 + 𝜇2

�̃� + 𝐶1
⋅

2𝜎𝒙�̃� + 𝐶2

𝜎2𝒙 + 𝜎2�̃� + 𝐶2

= 𝑙(𝑛) ⋅ 𝑐𝑠(𝑛)

Here, 𝜇𝒙, 𝜎𝒙 and 𝜎𝒙�̃� denote the mean of 𝒙, the variance of 𝒙, and the
covariance of 𝒙 and �̃�, respectively. To ensure numerical stability, small
constants 𝐶1 and 𝐶2 are used. Means, standard deviations, and covari-
ance are computed with a 3D Gaussian filter of standard deviation 𝜎𝐺.
The terms 𝑙(𝑛) and 𝑐𝑠(𝑛) represents luminance and contrast sensitivity
measures, respectively.

To utilize the SSIM-based image quality measure as a loss function,
we especially apply rectified linear unit (ReLU) activation function on
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those two terms to avoid the negative values in the loss function,

‴(𝑛) ∶= 𝑚𝑎𝑥(0, 𝑙(𝑛)); 𝑐𝑠(𝑛) ∶= 𝑚𝑎𝑥(0, 𝑐𝑠(𝑛))

inally, the MS-SSIM for each voxel 𝑛 is computed over a pyramid of
different resolutions as follows,

S-SSIM(𝑛) = 𝑙𝛽𝑀 (𝑛) 𝑐𝑠𝛽𝑀 (𝑛)
𝑀−1
∏

𝑗=1
𝑐𝑠

𝛿𝑗
𝑗 (𝑛) (4)

he hyperparameters 𝛽 and {𝛿𝑗} in Eq. (4) and 𝛼 in Eq. (1) are set
mpirically during the offline training stage of the network and have
een chosen on a validation set of images.

.2. Voxel-wise classification network

The difference map �̃� = �̃�𝑐 − �̃�𝑏 of the two predicted maps from the
egression network is provided as input to the classification network.
e learn a mapping 𝐹 ∶ �̃� → �̃� to predict the class label 𝑘 of each voxel

n �̃� using a 3D residual U-Net. Each voxel �̃�𝑛 denotes the probability
f being classified as class 0, 1, or 2, representing the background,
ell interior, and cell border classes, respectively. In order to train the
etwork, the target voxel-wise labeled image 𝒗 is generated from the
orresponding ground truth instance-wise labeled image 𝒙𝑙 with 𝐿 cell
nstances. In such a target image 𝒗, a voxel of a cell is considered

border voxel if any of its neighbors has a different cell label. The
emaining voxels of that cell are considered cell interior voxels. The
ell interior and border voxels are labeled as 1 and 2, respectively,
hile all background voxels are labeled as 0. With the ground truth and
redicted maps, we train the network using a loss function combining
oft Dice loss (Hatamizadeh, Nath, et al., 2022) and focal loss (Lin,
oyal, Girshick, He, & Dollár, 2017) as follows,

𝑜𝑠𝑠, 𝐿𝐶 = 1
𝑇

𝑇
∑

𝑡=1
[𝐶Dice(𝒗𝑡, �̃�𝑡) + 𝐶focal(𝒗𝑡, �̃�𝑡)] (5)

where,

𝐶Dice(𝒗, �̃�) = 1 − 2
𝐾

𝐾−1
∑

𝑘=0

∑𝑁
𝑛=1 𝑣𝑘(𝑛)�̃�𝑘(𝑛)

∑𝑁
𝑛=1

[

𝑣2𝑘(𝑛) + �̃�2𝑘(𝑛)
]

𝐶focal(𝒗, �̃�) = − 1
𝑁

𝑁
∑

𝑛=1

𝐾−1
∑

𝑘=0
𝑣𝑘(𝑛)[1 − �̃�𝑘(𝑛)]𝛾 log �̃�𝑘(𝑛)

and, �̃�𝑘(𝑛) =
𝑒�̃�𝑘(𝑛)

∑𝐾−1
𝑗=0 𝑒�̃�𝑗 (𝑛)

ere, 𝐾 = 3 for three-class voxel-wise classification. The Dice loss
nables the network to maximize the overlap of voxels between the
round truth and segmentation. The focal loss mainly aims to minimize
he segmentation error on the hard examples, such as cell border voxels.

We illustrate the predicted intermediate maps from the two net-
orks in the proposed DeepSeeded approach for an example 𝐸.𝑐𝑜𝑙𝑖

mage stack in Fig. A.6.

.3. Seeded watershed

From the voxel-wise classified output �̃�, the voxels belonging to
he cell interior class (class 1) are exploited to compute the seeds of
he watershed algorithm. We perform connected component analysis to
abel the 1-classified voxels as seeds. The resulting seed-labeled image
s denoted as �̃�. We then apply the watershed function on the cell
nterior-enhanced image �̃�𝑐 . Starting with the seed locations in image
̃, the seeded watershed algorithm attributes each voxel in �̃�𝑐 to a
particular seed. The resulting output is an instance labeled image �̃�𝑙

ith 𝐿 detected cells.
5

Algorithm 1 Compute Cell Distance Map

1: Input: Instance labeled image 𝒙𝑙
2: Output: Cell distance map 𝒙𝑐
3: 𝒙𝑐 ← 𝑧𝑒𝑟𝑜𝑠(𝑠𝑖𝑧𝑒(𝒙𝑙)) ⊳ initialize as matrix of zeros
4: 𝑶 ← voxel locations of 𝒙𝑙 where 𝑙 = 0
5: for 𝑙 = 1, ...., 𝐿 do
6: 𝑐𝑙 ← 𝑙𝑡ℎ cell ⊳ coordinates of 𝑙𝑡ℎ cell
7: for 𝑝 in 𝑐𝑙 do
8: 𝑖, 𝑗, 𝑘 ← location of 𝑝 in 𝒙𝑙
9: for 𝑞 in 𝑂 do
0: 𝑑𝑝𝑞 ← E(𝑝, 𝑞) ⊳ Euclidean distance
1: end for
2: 𝒙𝑐 (𝑖, 𝑗, 𝑘) ← 𝑚𝑖𝑛(𝑑𝑝𝑞)
3: end for
4: end for

3. Experimental setup

In this section, we provide the implementation details of the cas-
caded deep learning framework, the description of the dataset, the
evaluation metrics, and an account of the comparative methods.
Algorithm 2 Compute Border Neighbor Distance Map

1: Input: Instance labeled image 𝒙𝑙
2: Output: Border neighbor distance map 𝒙𝑏
3: 𝒙𝑏 ← 𝑧𝑒𝑟𝑜𝑠(𝑠𝑖𝑧𝑒(𝒙𝑙)) ⊳ initialize as matrix of zeros
4: for 𝑙 = 1, ...., 𝐿 do
5: 𝑐𝑙 ← 𝑙𝑡ℎ cell
6: 𝑐𝑏 ← boundary voxels of 𝑐𝑙
7: for 𝑝 in 𝑐𝑏 do
8: 𝑖, 𝑗, 𝑘 ← location of 𝑝 in 𝒙𝑙
9: for 𝑚 = 1, ...., 𝐿 and 𝑚 ≠ 𝑙 do
0: 𝑐𝑚 ← 𝑚𝑡ℎ cell
1: for 𝑞 in 𝑐𝑚 do
2: 𝑑𝑝𝑞 ← E(𝑝, 𝑞) ⊳ Euclidean distance
3: end for
4: end for
5: 𝒙𝑏(𝑖, 𝑗, 𝑘) ← 1 − 𝑚𝑖𝑛(𝑑𝑝𝑞)
6: end for
7: end for

3.1. Implementation details

The regression network has been implemented by modifying the
original single encoder–decoder 3D U-Net into two decoders and a
single encoder architecture shown in Fig. 1. The encoder and each
of the two decoders consist of five consecutive convolution layers. In
the encoding path, each convolution layer performs two 3 × 3 × 3
convolutions with ReLU activation and batch normalization, followed
by a 2 × 2 × 2 max pooling with strides of two. The feature maps
used in the five convolution layers of the encoder are 32, 64, 128,
256, and 512. The same number of feature maps are used for both
decoders but in reverse order. In each of the two decoding paths, there
is a transposed convolution with 2 × 2 × 2 strides, followed by two
3 × 3 × 3 convolutions along with similar activation and normalization.
We have implemented the network in the PyTorch framework. The
MS-SSIM loss has been self-implemented for the 3D images. For the
smooth L1 loss, PyTorch’s built-in function has been exploited. The
hyperparameter 𝛼 in the loss function equation (1) is set to 0.4. In
SSIM computation, the means, standard deviations, and covariance are
calculated using a 3D Gaussian filter with a kernel size of 11 × 11 × 11
and a standard deviation of 𝜎𝐺 = 1.5. Further, in the MS-SSIM loss
term equation (4), we have set 𝑀=5, 𝛽 = 0.1333, and {𝛿𝑗}4𝑗=1 =
{0.0448, 0.2856, 0.3001, 0.2363}. The network was trained for a maximum

of 250 epochs using a batch size of 2. If there is no change in the loss
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values for 30 consecutive epochs, the network stops training. The initial
learning rate is set at 5 × 10−4, and it is gradually reduced at a rate of
0.25 to a minimum value of 10−5. The Adam optimization is used for
adjusting the weights of the network.

The voxel-wise classification network has been implemented by
incorporating residual blocks within a 3D U-Net architecture shown
in Fig. 1. Like the regression network, this network consists of five
convolutional layers in both encoding and decoding paths with 32, 64,
128, 256, and 512 feature maps. We have included two residual blocks
in each of the convolutional layers of the network. The parametric
ReLU (PReLU) activation function and instance normalization have
been applied after the convolution operation. The kernel sizes for
convolution and transposed convolution operations are set to be similar
to those used in the regression network. The focal loss parameter is
empirically set to 𝛾 = 1. The network has been trained for a batch
size of 2, the learning rate of 10−4, and a maximum epoch of 250. We
have implemented the network using the open-source PyTorch-based
framework MONAI (Cardoso et al., 2022).

3.2. Dataset

We exploit a 3D synthetic biofilm dataset and a few real biofilm
3D images in our experiment. The synthetic dataset has been gener-
ated using a biofilm simulation framework developed in our previous
work (Toma et al., 2022), which can simulate 3D synthetic biofilms
consisting of realistic-shaped bacteria cells. We simulated 40 synthetic
biofilm stacks of dimensions 𝑥 × 𝑦 × 𝑧, where 𝑥, 𝑦 ∈ [300, 500] and

∈ [100, 200]. Among them, 10 stacks have been separated as test
tacks, 5 stacks for validation, and the rest of the stacks have been used
or training. The training and validation set images have been further
ubdivided into multiple smaller patches of 128 × 128 × 64 by random

cropping and data augmentation operations. Also, we have generated
100 synthetic test volumes of 150 × 150 × 64 by random cropping from
the original larger test stacks.

We have performed experiments on lattice light-sheet microscopy
images (Zhang et al., 2019) of two kinds of real bacteria species,
Escherichia coli and Shewanella oneidensis. We have exploited an Es-
cherichia coli image dataset from previously published works (Toma
et al., 2022; Zhang et al., 2020). Further, we have acquired fluorescence
images of a Shewanella oneidensis biofilm, which has a considerably
higher cell density than an Escherichia coli biofilm. The biofilm of
Shewanella oneidensis was observed under two different conditions: one
with a temporal interval of 5 min and another with an interval of 30 s.
In both cases, each 2D slice was acquired at an exposure time of 10 ms.
The resolution is approximately 230 nm in 𝑥 and 𝑦, and 370 nm in
𝑧, assuming green fluorescent protein (GFP) excitation and emission.
Because manually labeling cells to produce ground truth annotation
from dense 3D biofilm images is very laborious and challenging, we
created ground truth cell labeling for three E. coli and two S. oneidensis
stacks cropped from the original larger stacks. Two of the E. coli stacks
have dimensions of 164 × 166 × 51 and 153 × 154 × 51, and the third
has a dimension of 150 × 150 × 25. These cropped stacks correspond
o three different time points in an E. coli image sequence. Among the
hree stacks, the first stack was used in the training set along with its
ultiple augmented versions by flip and transpose operations in 𝑥−𝑦−𝑧

dimensions. The rest of the two E. coli stacks were used for testing.
The ground truth annotations of the E. coli stacks were generated by
manually tracing the bacteria cells slice-by-slice in 3D.

For the dense S. oneidensis stacks, ground truth annotations were
generated in a semi-automatic fashion by manually tracing cell seeds or
centroids slice-by-slice in 3D and then applying seeded watersheds on
their cell distance maps obtained from the regression network shown
in Fig. 1. The two S. oneidensis stacks with ground truth annotations
have dimensions of 150 × 150 × 25 and they correspond to two
different time points of the S. oneidensis sequence with 5 min interval.
6

To further assess the robustness of the models in handling variations in
segmentation imagery, we verified segmentation performance qualita-
tively on additional data. We demonstrated performance on another S.
oneidensis stack with larger dimensions of 200 × 200 × 50. This stack
corresponds to a temporal frame of the S. oneidensis sequence captured
at a 30-second interval.

3.3. Evaluation metrics

We evaluate the cell counting accuracy of our segmentation output
𝑆 with respect to the ground truth annotation 𝐺 using per-image cell
counting F1 score as follows,

𝐶𝐶𝐹1 = 2 × 𝑇𝑃
2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

If we denote the number of detected cells as 𝑁𝑆 and the number
of ground truth cells as 𝑁𝐺𝑇 , 𝑇𝑃 represents the number of correctly
etected cells, 𝐹𝑃 = 𝑁𝑆 − 𝑇𝑃 represents the number of detected cells
hat do not exist in 𝐺𝑇 and 𝐹𝑁 = 𝑁𝐺𝑇 − 𝑇𝑃 represents the number of
issing cells in 𝑆. We compute 𝐶𝐶𝐹1 for a range of intersection-over-
nion (𝐼𝑜𝑈) values {0.1, 0.2, 0.3, 0.4, 0.5} A cell is considered 𝑇𝑃 if the

percentage of overlapped voxels between 𝑆 and 𝐺𝑇 is above a certain
𝑜𝑈 threshold. By computing 𝐶𝐶𝐹1 over a range of 𝐼𝑜𝑈 values, we
an understand how much cell counting accuracy is affected if more
ell-volume overlapping is expected.

We also compute the single-cell F1 score, denoted as 𝑆𝐶𝐹1, to
valuate cell segmentation accuracy. 𝑆𝐶𝐹1 provides an assessment
f the number of voxels that are correctly classified per instance on
verage in the segmentation result. To calculate 𝑆𝐶𝐹1, each instance in
he segmentation result 𝑆 is compared with the closest instance in the
round-truth mask 𝐺 based on their spatial overlap. From this compar-
son, we determine the true positive voxels (𝑇𝑃 𝑙), false positive voxels
𝐹𝑃 𝑙), and false negative voxels (𝐹𝑁 𝑙) for each matched instance 𝑙.
he number of matching instances, denoted as 𝑁𝑚𝑎𝑡𝑐ℎ, can be less than
r equal to the total number of cells in the ground-truth mask. The
𝐶𝐹1 score indicates how well the segmentation result preserves the
ell volume.

𝐶𝐹1 = 1
𝑁𝑚𝑎𝑡𝑐ℎ

𝑁𝑚𝑎𝑡𝑐ℎ
∑

𝑙=1

2 × 𝑇𝑃 𝑙

2 × 𝑇𝑃 𝑙 + 𝐹𝑃 𝑙 + 𝐹𝑁 𝑙

To further evaluate the accuracy of the segmentation in separating
touching cells, we also compute a single-cell boundary F1 score (Wang
et al., 2021) (denoted as 𝑆𝐶𝐵𝐹1). The score 𝑆𝐶𝐵𝐹1 tells us per
ell how many boundary points match with the contour of the corre-
ponding ground truth instance. In the following expression of 𝑆𝐶𝐵𝐹1,
ubscript 𝑏 represents the boundary voxels.

𝐶𝐵𝐹1 = 1
𝑁𝑚𝑎𝑡𝑐ℎ

𝑁𝑚𝑎𝑡𝑐ℎ
∑

𝑙=1

2 × 𝑇𝑃 𝑙
𝑏

2 × 𝑇𝑃 𝑙
𝑏 + 𝐹𝑃 𝑙

𝑏 + 𝐹𝑁 𝑙
𝑏

.4. Comparative methods

The performance of the proposed method has been assessed by
omparing it against four state-of-the-art deep learning techniques and

classical segmentation approach. We have compared against the
opular distance prediction-based cell segmentation method by Scherr
t al. (2020), which predicts two distance prediction maps using a two-
ecoder U-Net and later performs the seeded watershed segmentation
sing the predicted maps. For better comparison, unlike performing
he empirical thresholding-based seed selection approach mentioned in
he paper, we have performed automatic multi-class Otsu threshold-
ng (Liao et al., 2001) (three-class in this case) to obtain the seeds.
ence, we call this method a distance prediction network with multi-
lass Otsu and the seeded watershed, DPN+Multi-Otsu+SW. Also, the

original paper performs 3D segmentation using a 2D network in a slice-
by-slice fashion, whereas we have compared against fully 3D distance
predictions by modifying the original 2D network into 3D. We have

also compared against a method consisting of a CNN-based pixel-wise
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Fig. 3. Qualitative evaluation on synthetic 3D biofilm images. The white, yellow, and red arrows indicate various locations of touching, broken, and missing cells, respectively.
segmentation followed by a seeded watershed-based post-processing.
While such methods mentioned in the literature (Eschweiler et al.,
2019; Kar et al., 2022; Kucharski & Fabijańska, 2021) exploit a standard
U-Net convolutional network, we have adopted a more recent network
architecture, Swin Transformer-based U-Net (Hatamizadeh, Nath, et al.,
2022) to perform the 3D pixel-wise classification task. We call this
method Swin-TransNet+SW. The proposed method has also been com-
pared against the popular cell-instance segmentation network Cellpose
pipeline (Stringer et al., 2021). We have further compared against the
latest deep learning-based 3D biofilm segmentation approach named
BCM3D 2.0 (Zhang et al., 2022), which first performs dual distance
transform predictions using a regression CNN, followed by a multi-stage
thresholding-based seed selection for the seeded watershed segmen-
tation. Finally, we have compared against a classical segmentation
approach exploited in a recent paper (Kar et al., 2022) named MARS,
which performs seeded watersheds using the h-minima (or maxima)
operator. We used the publicly available code repositories mentioned
in the corresponding papers to execute the comparative methods.

4. Experimental results and discussion

We demonstrate the qualitative comparison of the segmentation
results on two synthetic biofilm test stacks in Fig. 3. The images
shown in Fig. 3(a) are the maximum intensity projections (MIPs) of the
original 3D inputs. The ground truth annotations and the corresponding
segmentation outputs are visualized in 3D. The cells which are correctly
7

identified in the segmentation result are annotated with the same color
as in GT annotation for proper visual comparison. From the figure, we
observe that the DeepSeeded method can effectively separate the touch-
ing cells and prevent the individual cell from breaking into multiple
segments. We also observe in Fig. 3(f) that the BCM3D 2.0 method
effectively addresses the touching cell separation for these synthetic
image stacks. However, the results from BCM3D 2.0 also contain a few
broken and missing cells, which may result from the multiple stages of
thresholding in the seed selection process. Moreover, one may notice
that the results from the DPN+Multi-Otsu+SW method contain several
unresolved touching cells. We also find that compared to the results
from these distance prediction-based methods in Fig. 3(c), Fig. 3(f), and
Fig. 3(d), the results from the Cellpose, Swin-TransNet+SW, and MARS
method contain more errors. The enhancement of the cell interior and
border information through distance predictions appears to make the
subsequent segmentation task easier. The results also indicate that the
Cellpose method mostly suffers from over-segmentation errors resulting
in broken cell segments. Since the method is based on estimating spatial
gradient features, the intra-cellular intensity inhomogeneity may lead
to over-segmentation errors. Further, we observe in Fig. 3(h) that the
classical MARS approach suffers heavily in separating the touching cells
and preserving the cell volume.

In Table 2, we report the mean and standard deviation of the
quantitative evaluation measures on 100 synthetic biofilm test stacks.
The 𝐶𝐶𝐹1 scores are reported for 𝐼𝑜𝑈 values of 0.1 and 0.5. From
the table, we notice that all three quantitative scores comply with our
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Table 2
Quantitative evaluation on 100 synthetic 3D biofilms.
Methods 𝐶𝐶𝐹1 𝑆𝐶𝐹1 𝑆𝐶𝐵𝐹1

𝐼𝑂𝑈 = 0.1 𝐼𝑂𝑈 = 0.5

DPN+Multi-Otsu+SW (Scherr, 2020) 0.893 ± 0.04 0.827 ± 0.08 0.883 ± 0.02 0.957 ± 0.02
Swin-TransNet+SW (Hatamizadeh, 2022a) 0.844 ± 0.06 0.485 ± 0.14 0.664 ± 0.03 0.686 ± 0.04
MARS (Kar, 2022) 0.651 ± 0.08 0.017 ± 0.01 0.377 ± 0.05 0.427 ± 0.02
BCM3D 2.0 (Zhang, 2022) 0.877 ± 0.05 0.863 ± 0.06 0.881 ± 0.03 0.962 ± 0.02
Cellpose (Stringer, 2021) 0.810 ± 0.06 0.440 ± 0.09 0.663 ± 0.03 0.743 ± 0.03
DeepSeeded 0.948 ± 0.02 0.915 ± 0.05 0.904 ± 0.02 0.980 ± 0.01
Fig. 4. Qualitative evaluation on two 3D 𝐸.𝑐𝑜𝑙𝑖 images. The white, yellow, and red arrows indicate various locations of touching, broken, and missing cells, respectively.
visual observation from Fig. 3. The proposed method achieves higher
average scores for each quantitative segmentation accuracy measure.

We also demonstrate the qualitative segmentation results on real
biofilm stacks in Figs. 4 and 5. The images shown in Figs. 4(a) and
5(a) are the maximum intensity projections (MIPs) of the corresponding
3D inputs. The GT annotations and the segmentation results from
different methods are visualized in 3D. Overall, the DeepSeeded method
outperforms competing approaches in segmenting individual bacteria
cells from two kinds of real microscopy biofilms. Further, we notice that
the BCM3D 2.0 method causes more broken and missing cells on these
real biofilm stacks compared to its results on synthetic data. It is also
observed that the DPN+Multi-Otsu+SW and Swin-TransNet+SW meth-
ods result in many touching cells in segmenting the dense 𝑆ℎ𝑒𝑤𝑎𝑛𝑒𝑙𝑙𝑎
stacks. The higher cell density of the 𝑆ℎ𝑒𝑤𝑎𝑛𝑒𝑙𝑙𝑎 biofilms makes single-
cell segmentation more challenging. In addition, the Cellpose and MARS
methods also produce less effective segmentations for the real biofilm
stacks causing broken and touching cells.
8

In Tables 3, 4, 5, and 6, we also report the quantitative measures
on these four real biofilm volumes. The differences in the challenges
posed by each type of biofilm (Shewanella with higher cell density
and E. coli with lower image resolution) require separate reporting of
the segmentation results for each biofilm type, resulting in individual
tables for specific biofilm stacks instead of a consolidated table. From
the results presented in these tables, it is evident that the DeepSeeded
method achieves higher scores in all three quantitative measures on
each of the four image stacks. Also, we observe that the difference
between the 𝐶𝐶𝐹1 scores at 𝐼𝑜𝑈 values of 0.1 and 0.5 is small for the
proposed method on all four stacks, while the competing methods have
a larger difference between the corresponding 𝐶𝐶𝐹1 scores at 𝐼𝑜𝑈 of
0.1 and 0.5. This reflects that the proposed method not only separates
individual cells but also preserves the size/volume of the cells. This size
information can be valuable in comprehending cellular characteristics
and tracking cell behavior over time.

In order to provide further evidence of the effectiveness of the
DeepSeeded method, additional qualitative test results on another real
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Fig. 5. Qualitative evaluation on two 3D 𝑆ℎ𝑒𝑤𝑎𝑛𝑒𝑙𝑙𝑎 images. The white, yellow, and red arrows indicate various locations of touching, broken, and missing cells, respectively.
biofilm stack, denoted as ‘‘𝑆ℎ𝑒𝑤𝑎𝑛𝑒𝑙𝑙𝑎-3’’ with dimensions of
200 × 200 × 50, are presented in Fig. A.7 of the appendix. Integrating
an image quality-specific loss term and a refined cell border repre-
sentation into the training of the regression network, along with a
data-driven seed estimation using an additional network, contributed
to the success of the proposed method in dense cell segmentation
compared to competing approaches.

We also report the time taken for model building (i.e., offline
training stage) and the online testing stage for the proposed method and
other competing approaches. All deep learning-based methods were
trained for 250 epochs using a machine equipped with an NVIDIA
TITAN RTX GPU with 24 GB memory. The BCM3D 2.0 method required
an average of 72.1 s per epoch during training, resulting in a total
training time of 5.0 h. The average testing time on a single instance was
1.7 s. As for the DPN+Multi-Otsu+SW method, the per epoch training
time averaged at 90.5 s, leading to an overall training time of 6.3 h.
The average testing time on a single instance was 4.6 s. Regarding
the Swin-TransNet+SW method, each epoch’s training time averaged at
20.8 s, resulting in a total training time of 1.4 h. The average testing
time on a single instance was 3.1 s. For the Cellpose method, the per
epoch training time was approximately 60.5 s, leading to an overall
training time of 4.2 h. The average testing time on a single instance
was 10.0 s. Since the MARS method is a classical approach, it does not
require a training phase. The average testing time on a single instance
was 1.5 s. In our proposed DeepSeeded method, the per epoch training
time for the regression network (Net-1) averaged at 92.1 s, resulting in
a total training time of 6.4 h. The per epoch training time for the voxel-
wise classification network (Net-2) was approximately 17.5 s, leading
9

to an overall training time of 1.2 h. The average testing time on a single
instance was 4.9 s.

4.1. Ablation study

In order to understand the individual contribution of each of the
two networks in the proposed method, we also demonstrate the results
of an ablation study in Tables 7 and 8 on the real biofilm stacks
𝐸.𝑐𝑜𝑙𝑖-2 and 𝑆ℎ𝑒𝑤𝑎𝑛𝑒𝑙𝑙𝑎-2, respectively. In both tables, the first row
lists the segmentation scores exploiting the regression network (Net-1)
combined with the multi-class Otsu thresholding and seeded watershed.
The second row lists the scores corresponding to residual U-Net as
the voxel-wise classification network (Net-2) followed by the seeded
watershed. From the quantitative scores presented in these two tables,
it is clear that the proposed architecture DeepSeeded provides the best
segmentation performance in terms of all three quantitative measures,
irrespective of the type of biofilm images. We also see from the results
that the Net-1+Multi-Otsu+SW method achieves better scores than the
Net-2+SW method. The superiority is due to the enhancement of the
cell interior and border by the regression network, which makes the
subsequent segmentation task easier than direct segmentation on the
raw inputs.

4.2. Limitations and future potentials

The proposed method DeepSeeded demonstrates significant perfor-
mance gain compared to existing popular solutions when segmenting
touching instances in dense cellular environments, such as in bacterial
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Table 3
Quantitative evaluation on stack 𝐸.𝑐𝑜𝑙𝑖-1.
Methods 𝐶𝐶𝐹1 𝑆𝐶𝐹1 𝑆𝐶𝐵𝐹1

𝐼𝑂𝑈 = 0.1 𝐼𝑂𝑈 = 0.5

DPN+Multi-Otsu+SW (Scherr, 2020) 0.931 0.828 0.795 0.898
Swin-TransNet+SW (Hatamizadeh, 2022a) 0.852 0.407 0.674 0.734
MARS (Kar, 2022) 0.836 0.173 0.514 0.580
BCM3D 2.0 (Zhang, 2022) 0.921 0.825 0.793 0.899
Cellpose (Stringer, 2021) 0.800 0.286 0.584 0.624
DeepSeeded 1.000 0.840 0.853 0.909
Table 4
Quantitative evaluation on stack 𝐸.𝑐𝑜𝑙𝑖-2.
Methods 𝐶𝐶𝐹1 𝑆𝐶𝐹1 𝑆𝐶𝐵𝐹1

𝐼𝑂𝑈 = 0.1 𝐼𝑂𝑈 = 0.5

DPN+Multi-Otsu+SW (Scherr, 2020) 0.855 0.327 0.618 0.713
Swin-TransNet+SW (Hatamizadeh, 2022a) 0.800 0.434 0.635 0.752
MARS (Kar, 2022) 0.600 0.074 0.327 0.351
BCM3D 2.0 (Zhang, 2022) 0.842 0.316 0.593 0.666
Cellpose (Stringer, 2021) 0.671 0.197 0.560 0.658
DeepSeeded 0.937 0.829 0.800 0.912
Table 5
Quantitative evaluation on stack 𝑆ℎ𝑒𝑤𝑎𝑛𝑒𝑙𝑙𝑎-1.
Methods 𝐶𝐶𝐹1 𝑆𝐶𝐹1 𝑆𝐶𝐵𝐹1

𝐼𝑂𝑈 = 0.1 𝐼𝑂𝑈 = 0.5

DPN+Multi-Otsu+SW (Scherr, 2020) 0.821 0.680 0.786 0.883
Swin-TransNet+SW (Hatamizadeh, 2022a) 0.800 0.450 0.670 0.770
MARS (Kar, 2022) 0.562 0.123 0.446 0.541
BCM3D 2.0 (Zhang, 2022) 0.864 0.722 0.750 0.866
Cellpose (Stringer, 2021) 0.825 0.402 0.673 0.783
DeepSeeded 0.885 0.874 0.964 0.967
Table 6
Quantitative evaluation on stack 𝑆ℎ𝑒𝑤𝑎𝑛𝑒𝑙𝑙𝑎-2.
Methods 𝐶𝐶𝐹1 𝑆𝐶𝐹1 𝑆𝐶𝐵𝐹1

𝐼𝑂𝑈 = 0.1 𝐼𝑂𝑈 = 0.5

DPN+Multi-Otsu+SW (Scherr, 2020) 0.834 0.717 0.811 0.925
Swin-TransNet+SW (Hatamizadeh, 2022a) 0.775 0.539 0.705 0.822
MARS (Kar, 2022) 0.577 0.110 0.427 0.538
BCM3D 2.0 (Zhang, 2022) 0.833 0.660 0.756 0.876
Cellpose (Stringer, 2021) 0.817 0.435 0.650 0.771
DeepSeeded 0.918 0.900 0.976 0.977
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biofilms. However, there are several areas where further improvement
can be made. In the proposed cascaded deep learning framework, the
two networks have been trained separately on two different loss func-
tions: one is for the regression task of two distance map estimations,
and another is for the semantic segmentation task for classifying the
cell seeds. Such separate training might not be optimal in terms of
smooth information flow between the two networks. Therefore, in fu-
ture development, the 𝐷𝑒𝑒𝑝𝑆𝑒𝑒𝑑𝑒𝑑 framework can be further extended
to train the two networks jointly. Such joint training can be achieved in
an alternative optimization fashion, such as optimizing the regression
loss by adjusting the weights of the regression network, similar to the
current methodology; however, optimizing the voxel-wise (semantic)
classification loss by adjusting the weights of both networks. The joint
training strategy, which has been adopted in recent deep learning
frameworks (Lee, Cho, & Kim, 2019; Wang & Zhang, 2022), can further
enhance the learning of the DeepSeeded by ensuring better gradient flow
during backpropagation.

Furthermore, since the proposed segmentation framework addresses
cell segmentation in 3D, the memory requirement during training
increases with more training data, even when trained with smaller
training patches. Such limitation can be addressed by incorporating
memory-efficient CNN architectures as introduced in recent litera-
10

ture (Brügger, Baumgartner, & Konukoglu, 2019; Mescheder, Oechsle, n
Niemeyer, Nowozin, & Geiger, 2019; Qi, Yi, Su, & Guibas, 2017;
Reich, Prangemeier, Cetin, & Koeppl, 2021). The memory-efficient CNN
approaches leverage implicit 3D representations, known as occupancy
values (Mescheder et al., 2019), to overcome the high computational
complexity of traditional 3D CNNs. By learning a continuous decision
boundary in a function space instead of a dense voxelized representa-
tion, these networks become significantly more memory efficient than
traditional CNNs on 3D data. In our proposed DeepSeeded framework,

e can incorporate such memory-efficient architectures instead of tra-
itional U-Net-based CNNs for the regression and semantic segmenta-
ion tasks while still retaining the key benefits of our method, including
ffective cell border representation, specialized image quality-oriented
oss, and the two-staged cascaded workflow.

. Conclusion

This paper introduced a novel deep learning-based 3D cell segmen-
ation approach DeepSeeded to effectively segment touching cells in a
ensely packed microscopy image volume. We devised the segmenta-
ion problem as estimating the seeds of a classical watershed algorithm
sing a hybrid deep-learning model consisting of an image regression

etwork followed by a voxel-wise image classification network. The
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Table 7
Ablation study result on stack 𝐸.𝑐𝑜𝑙𝑖-2.

Methods 𝐶𝐶𝐹1 𝑆𝐶𝐹1 𝑆𝐶𝐵𝐹1

𝐼𝑂𝑈 = 0.1 𝐼𝑂𝑈 = 0.5

Net-1+Multi-Otsu+SW 0.850 0.679 0.770 0.882
Net-2+SW 0.786 0.394 0.664 0.760
DeepSeeded 0.937 0.829 0.800 0.912

Table 8
Ablation study result on stack 𝑆ℎ𝑒𝑤𝑎𝑛𝑒𝑙𝑙𝑎-2.

Methods 𝐶𝐶𝐹1 𝑆𝐶𝐹1 𝑆𝐶𝐵𝐹1

𝐼𝑂𝑈 = 0.1 𝐼𝑂𝑈 = 0.5

Net-1+Multi-Otsu+SW 0.854 0.806 0.933 0.934
Net-2+SW 0.836 0.531 0.690 0.800
DeepSeeded 0.918 0.900 0.976 0.977

regression network incorporates a specialized image quality-specific
loss term and a refined cell border representation during training,
resulting in highly enhanced cell interior and border estimation maps.
The voxel-wise classification network enables data-adaptive prediction
of cell seeds for the watershed algorithm, eliminating the need for sub-
optimal thresholding. We showed experimental results in segmenting
bacteria cells from 3D microscopy images of densely packed biofilms.
The proposed method achieved better segmentation results in qualita-
tive comparison and in terms of all the adopted quantitative evaluation
measures against the state-of-the-art cell segmentation methods. In the
future, to further strengthen the ability of DeepSeeded, we aim to opti-
mize the training strategy by performing joint optimization of the two
deep networks in an alternative minimization fashion. Additionally,
to enable efficient learning on large 3D training datasets, we intend
to replace the traditional U-Net schemes used in our approach with
memory-efficient U-Net approaches. By achieving fast and accurate 3D
segmentation in densely packed cell images, we anticipate enabling
more robust analysis of cell populations, including tasks such as track-
ing individual cell instances over time and quantifying their growth
and division rates. The code of the presented work will be available at
‘‘https://engineering.virginia.edu/viva/viva-research’’.
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Appendix

In Fig. A.6, we present the intermediate maps generated from the
two networks in the proposed DeepSeeded approach for an example
𝐸.𝑐𝑜𝑙𝑖 image stack. The predicted cell distance map and the border
neighbor distance map from the regression network are demonstrated
in Figs. A.6(b) and A.6(c), respectively. It is important to note that
we show the border neighbor distance map for a single slice only,
as the maximum intensity projection (MIP) view does not provide
suitable border visualization. The difference map of the cell distance
map and the border neighbor distance map is shown in Fig. A.6(d).
The observations from this figure indicate that the background is
more distinct, and the cells are better separated compared to the cell
distance map alone. Furthermore, we present the output of the voxel-
wise classification network after performing connected components in
Fig. A.6(e), which is referred to as the seed-labeled image. Finally,
Fig. A.6. (a) Given a raw image stack, the intermediate maps from the two networks and the final segmentation by DeepSeeded approach. Here, (a) input stack (MIP), (b)
predicted cell distance map (MIP), (c) predicted border neighbor distance map (single slice), (d) predicted difference map (MIP), (e) predicted seed labeled image (MIP), and (f)
final segmentation (3D point cloud). The term MIP refers to the maximum intensity projection.

https://engineering.virginia.edu/viva/viva-research
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Fig. A.7. Qualitative evaluation on a 3D 𝑆ℎ𝑒𝑤𝑎𝑛𝑒𝑙𝑙𝑎 image. The white, yellow, and red arrows indicate various locations of touching, broken, and missing cells, respectively.
the instance segmentation result after applying the seeded watershed
algorithm is illustrated in Fig. A.6(f).

In Fig. A.7, we qualitatively compare the segmentation results ob-
tained by different approaches on the 𝑆ℎ𝑒𝑤𝑎𝑛𝑒𝑙𝑙𝑎-3 image. To highlight
the segmentation errors in various methods, we have included arrows
in the figures. Overall, our observations indicate that the DeepSeeded
method performs better than the competing approaches in accurately
segmenting individual bacteria cells. We have also noticed that the
BCM3D 2.0 method results in several broken and missing cells, which
could be attributed to multiple thresholding steps during seed selection.
Additionally, the segmentation results obtained using the DPN+ Multi-
Otsu+SW and Swin-TransNet+SW methods exhibit numerous instances
of touching cells. The gradient-based Cellpose method tends to overseg-
ment, leading to broken cells in the output. Lastly, the classical MARS
12
method produces less effective segmentation output, resulting in a high
number of touching cells.
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