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BCM3D 2.0: accurate segmentation of single bacterial cells in
dense biofilms using computationally generated intermediate
image representations
Ji Zhang1,4, Yibo Wang1,4, Eric D. Donarski1, Tanjin T. Toma2, Madeline T. Miles1, Scott T. Acton2 and Andreas Gahlmann 1,3✉

Accurate detection and segmentation of single cells in three-dimensional (3D) fluorescence time-lapse images is essential for
observing individual cell behaviors in large bacterial communities called biofilms. Recent progress in machine-learning-based
image analysis is providing this capability with ever-increasing accuracy. Leveraging the capabilities of deep convolutional neural
networks (CNNs), we recently developed bacterial cell morphometry in 3D (BCM3D), an integrated image analysis pipeline that
combines deep learning with conventional image analysis to detect and segment single biofilm-dwelling cells in 3D fluorescence
images. While the first release of BCM3D (BCM3D 1.0) achieved state-of-the-art 3D bacterial cell segmentation accuracies, low signal-
to-background ratios (SBRs) and images of very dense biofilms remained challenging. Here, we present BCM3D 2.0 to address this
challenge. BCM3D 2.0 is entirely complementary to the approach utilized in BCM3D 1.0. Instead of training CNNs to perform voxel
classification, we trained CNNs to translate 3D fluorescence images into intermediate 3D image representations that are, when
combined appropriately, more amenable to conventional mathematical image processing than a single experimental image. Using
this approach, improved segmentation results are obtained even for very low SBRs and/or high cell density biofilm images. The
improved cell segmentation accuracies in turn enable improved accuracies of tracking individual cells through 3D space and time.
This capability opens the door to investigating time-dependent phenomena in bacterial biofilms at the cellular level.
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INTRODUCTION
Most terrestrial bacteria live in extended three-dimensional (3D)
tissue-like communities, named biofilms. As multicellular commu-
nities, bacteria can successfully colonize various biotic and abiotic
surfaces. Biofilm-dwelling bacteria interact intimately not only
with each other and the surface they reside on, but also with a
self-produced extracellular matrix (ECM) that consists of proteins,
DNA, and polysaccharides1–3. The sum total of these interactions
helps biofilms develop emergent capabilities beyond those of
isolated cells1,2,4,5. Most notably, biofilms are more tolerant
towards physical, chemical, and biological stressors5–7. Under-
standing how such capabilities emerge from the cooperative or
antagonistic behaviors among individual cells requires live-cell
compatible imaging technologies that are capable of resolving
and tracking single cells within dense 3D biofilms.
Recently developed light sheet-based fluorescence imaging

modalities combine high resolution with fast imaging speed and
low phototoxicity at levels that cannot be matched by confocal
microscopy8–10. Light sheet-based microscopy modalities are
therefore increasingly used for non-invasive time-lapse imaging
of eukaryotic cells and tissues11–13 as well as bacterial bio-
films14–16. Depending on the type of biofilm, the cell density may
however be too high to clearly resolve the gaps between cells
with diffraction-limited microscopy. Super-resolution imaging
modalities, such as structured illumination microscopy17,18,
improve the spatial resolution, but experimental improvements
in spatial resolution come at the cost of decreased temporal
resolution and increased light exposure to the specimen, which
again raises photobleaching and phototoxicity concerns19,20. An

additional challenge arises for cell tracking studies. Tracking
motile cells may require high-frame-rate imaging to achieve
sufficient temporal resolution. Higher frame rates need to be
accompanied by a proportional decrease in excitation laser
intensities to mitigate photobleaching and phototoxicity. The
decreased excitation laser intensities then result in lower signal-to-
background ratios (SBRs) and signal-to-noise ratios (SNRs) in the
individual images. The inherent trade-offs between spatial and
temporal resolution, SBR/SNR, and photobleaching and photo-
toxicity are driving the continued development of new and
improved image processing approaches that extract ever-
increasing amounts of useful information from the available
experimental images.
Image processing pipelines based on supervised training of

deep convolutional neural networks (CNNs) have been shown to
outperform conventional image processing approaches for a
variety of tasks in biomedical image analysis21,22. For 3D biofilm
image segmentation, we have recently developed Bacterial Cell
Morphometry 3D (BCM3D 1.0), which achieved state-of-the-art
performance for bacterial cell counting and cell shape estima-
tion23. BCM3D 1.0 does not rely on manually annotated training
data, but instead combines in silico-trained CNNs for voxel
classification with graph-theoretical linear clustering (mLCuts24) to
post-process the thresholded CNNs outputs (i.e., the confidence
maps for voxel-level classification). Using this approach, BCM3D 1.0
automatically identifies individual cells in 3D images of 3D
bacterial biofilms, reports their 3D shape and orientation, and
classifies cell types with different morphologies. However,
processing images with low SBRs and high cell densities remains
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challenging. Specifically, over- and under-segmentation errors
increase in frequency for low SBR and high cell density images.
Cellpose25,StarDist26, and the work by Scherr et al.27, are CNN-

based approaches that create intermediate image representations
for better segmentation. We reasoned that solving an image-to-
image translation task may prove to be a more robust strategy for
handling extreme imaging conditions than the voxel classification
approach implemented in BCM3D 1.0 or, at least, yield comple-
mentary segmentation results to BCM3D 1.0. Two different
intermediate image representations are generally employed. The
first representation is used to locate objects and the second
representation is used to highlight the boundaries of objects. In
previous work25–27, the CNN-predicted Euclidean distance to the
nearest background pixel/voxel or the CNN-predicted object/
background probability map was used to locate objects. Genera-
tion of boundary representations varies more widely: StarDist and
Cellpose use star-convex polygons and spatial gradients separately
to give complete boundaries, which can be used for object shape
estimation. Scherr et al. instead enhance boundary regions that
are close to other objects to prevent them from merging. Inspired
by these approaches, we expanded the BCM3D workflow with a
complementary CNN-based processing pipeline that translates the
raw 3D fluorescence images into two distinct intermediate image
representations that, in combination, are more amenable to
conventional mathematical image processing, namely seeded
watershed28 and Otsu thresholding29. For object localization, we
adapted the approach used by StarDist30 and Scherr et al.27. For
boundary information, however, we generated a new intermedi-
ate image representation that provides a complete 3D boundary
of an object and additionally highlights whether the boundary is
near other objects. We establish that, when combined and
processed appropriately, these intermediate image representa-
tions provide biofilm segmentation results with higher accuracy
than BCM3D 1.0. Importantly and in contrast to BCM3D 1.0, the
generation of intermediate image representations does not
require image deconvolution as a pre-processing step. Deconvo-
lution can lead to noise amplification31 which then leads to false
positive object segmentation with physiologically unreasonable
shapes. We show that, using intermediate image representations,
experimentally acquired biofilm images can be successfully
segmented using CNNs trained with computationally simulated
biofilm images—a feature shared with BCM3D 1.0 that provides
the flexibility to segment a wide variety of different cell shapes23.
The segmentation performance of this new approach, which we
term BCM3D 2.0, is superior to Omnipose and Cellpose 2.0, two
recently developed, state-of-the-art, CNN-based cell segmentation
approaches, especially for dense biofilms imaged at low SBRs. The
improvements in segmentation accuracy of BCM3D 2.0 enables
accurate multi-cell tracking, which is demonstrated using 3D
simulated and experimental time-lapse biofilm images.

RESULTS
Cell segmentation using intermediate image representations
High cell density and low SBR datasets are encountered often in
biofilm research, especially when cells touch each other and
biofilms extend farther into the vertical (z-) dimension, so that
light scattering becomes a pronounced background contribu-
tion32. We, therefore, sought to specifically improve bacterial cell
segmentation accuracy for high cell density and low SBR biofilm
images. Our previous approach (BCM3D 1.0) relied on deconvolu-
tion as a pre-processing step to sharpen the image and to increase
the SBR. However, deconvolution can introduce artifacts into an
image, such as ringing33, and noise amplification34, and thereby
introduce errors into the segmentation results. The segmentation
pipeline of BCM3D 2.0, in contrast, works on the raw image data
directly without the need for deconvolution.

We compared two commonly used cell labeling approaches,
namely cell interior labeling through expression of cytosolic
fluorescent proteins and cell membrane staining with membrane-
embedded fluorescent dyes. For cell interior labeling (Fig. 1a, b),
BCM3D 2.0 consistently produces cell counting accuracies of >95%
for SBRs >1.3 and cell densities < 65%. A clear drop-off in cell
counting accuracy is observed for SBRs of 1.19 but cell counting
accuracies of >70% are still achieved even for high cell densities of
65%. Importantly, the performance of BCM3D 2.0 on low SBR
datasets represents a substantial improvement (>20%) over the
performance of BCM3D 1.0. Membrane staining (Fig. 1c, d)
produces even more challenging images for segmentation, due
to the less pronounced fluorescence intensity minima between
cells (red arrow in Fig. 1b, d). We again observe a drop in cell
counting accuracy for SBRs of 1.19. This drop-off is however much
less pronounced than for the previous results obtained with
BCM3D 1.0, and represents an even larger (>29%) improvement
over BCM3D 1.0 for such extremely low SBR datasets. Visual
inspection of slices through the image volumes (Fig. 1b, d) reveals
that even for SBR= 1.3, the cell bodies are difficult to distinguish
for expert human annotators, especially for membrane-stained
cells. Despite the low contrast in the SBR= 1.3 datasets, BCM3D
2.0 is still able to achieve >90% cell counting accuracies, which,
depending on cell density, represents a 6–26% increase over the
performance of BCM3D 1.0.
To determine the improvement in cell shape estimation, we

evaluated the cell counting accuracies as a function of IoU
matching threshold for a SBR of 1.3 and a cell density of 62% (the
IoU matching threshold is a quantitative measure of cell shape
similarity relative to the ground truth). The cell counting
accuracies obtained by BCM3D 2.0 are consistently higher than
BCM3D 1.0 (CNN+ LCuts) and substantially higher than Omnipose
and Cellpose 2, especially for IoU matching thresholds larger than
0.5, indicating that cell shapes in this high density, low SBR dataset
are most accurately estimated by BCM3D 2.0 (Fig. 1e, f). A similar
trend is observed for single-cell segmentation accuracy and
single-cell boundary F1 score35—two additional metrics for
segmentation accuracy (Table 1). We note that we trained
Omnipose, Cellpose 2, and BCM3D 2.0 using the same simulated
training data for this comparison. Consistent with previous
findings36, Cellpose, the precursor algorithm to Omnipose, did
not produce physiologically reasonable cell shapes (Supplemen-
tary Fig. 7). Taken together, these results establish that more
robust cell segmentation can be achieved using the BCM3D 2.0
image processing pipeline, which uses CNNs to generate two
distinct intermediate image representations for subsequent
mathematical processing.

Segmentation of experimentally obtained biofilm images
To test the performance of BCM3D 2.0 on experimental data, we
first tested BCM3D 2.0 on a previously published E.coli biofilm
image, for which manual annotation masks are available23. For this
dataset, which features a relatively low cell density, BCM3D 2.0
performed on par with BCM3D 1.0 (CNN+ LCuts), but again
outperformed Omnipose and Cellpose 2 (Supplementary Fig. 8).
(We only considered recently developed 3D instance segmenta-
tion approaches for these comparisons. In previous work23, we
established that BCM3D 1.0 (CNN+ LCuts) outperformed both
Cellpose and the segmentation algorithm developed by Hartmann
et al.) To further demonstrate the versatility of BCM3D 2.0, we
acquired images of a thick S. oneidensis biofilm expressing GFP
that has an order of magnitude more cells. Visual inspection of the
segmentation results obtained by applying BCM3D 2.0, showed
physiologically reasonable cell shapes for a majority of segmented
objects (Fig. 2). For this biofilm image, which has a good SBR,
BCM3D 2.0 outperforms all other approaches, including Omnipose,
BCM3D 1.0 (CNN+ LCuts) and Cellpose 2.0 (Supplementary Fig. 9).
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Fig. 1 Performance of BCM3D 2.0 on previously unseen simulated biofilm images. a Cell counting accuracy (using an Intersection-over-
Union (IoU) matching threshold of 0.5 for each segmented object) averaged over N= 10 replicate datasets for cells labeled with cytosolic
fluorophores. IoU is a well-documented metric23,30,60 quantifying the amount of overlap between predicted cell and actual cell volumes.
b Example image of cells labeled with cytosolic fluorophores (Cell density= 62.2%, SBR= 1.34, indicated by white rectangle in a. a Cell
counting accuracy (using an IoU matching threshold of 0.5 for each segmented object) averaged over N= 10 replicate datasets for cells
labeled with membrane-localized fluorophores. d Example image of cells labeled with membrane-localized fluorophores (Cell density=
62.2%, SBR= 1.34, indicated by white rectangles in c). The red arrow indicates a close cell-to-cell contact. e, f Comparison of segmentation
accuracies achieved by BCM3D 1.0 (CNN + LCuts), Omnipose trained from scratch, Cellpose 2 fine-tuned and BCM3D 2.0 for cytosolic and
membrane labeling, respectively (SBR= 1.34, cell density= 62.2%). Segmentation accuracy is parameterized in terms of cell counting accuracy
(y axis) and IoU matching threshold (x axis). Each data point is the average of N= 10 independent biofilm images. Data are presented as mean
values ± one standard deviation. Scale bars are 2 µm.
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The above quantitative comparisons were made with reference
to manual annotation results made in selected 2D slices. Manual
annotation of 3D biofilm images is however too time-consuming
for thousands of cells distributed in 3D space23. We, therefore,
chose to additionally assess the segmentation accuracy using
representative morphological observables that are available after
segmentation, namely object volume, object solidity (volume
fraction of the object as compared to the smallest convex polygon
that encloses it), major axis length, longer minor axis length, and
the ratio of the two minor axes lengths (longer minor axis divided
by the shorter one). We performed principal component analysis
(PCA) using these morphological observables and project each
segmented object onto a plane spanned by the first two principal
components. For simulated data (for which the ground truth is
known) this approach shows a distribution for which the correctly
segmented objects are concentrated near the origin, whereas the
incorrectly segmented objects are predominantly located at the
periphery (Fig. 2a inset).
We applied the same PCA approach to experimental segmenta-

tion results obtained for a S. oneidensis biofilm containing ~3000
cells. Similar to simulated data, most of the segmentation objects
cluster near the origin of the two principal component axes (Fig.
2a). However, several segmented objects are asymmetrically
scattered around the periphery of the distribution. Inspecting
the 3D shapes of a few manually selected objects revealed that,
consistent with simulated data, physiologically reasonable cell
shapes cluster near the center of the distribution, while oddly
shaped objects predominantly localize at the periphery. To
automatically separate oddly shaped objects from the physiolo-
gically reasonable, rod-shape shaped objects, we trained a 3D
CNN (independent of BCM3D) with manually validated segmenta-
tion objects (obtained from experimental data, see methods). The
trained network efficiently (accuracy of 97% on the validation set)
separates rod-shaped objects (~82% of total) from oddly shaped
objects (~18% of total). This classification enables the display of
both subpopulations separately even though they are completely
intermixed in 3D space (Fig. 2b, c). In contrast, Omnipose and
Cellpose 2.0 have 40% and 5% rod-shaped objects respectively
identified by the shape classifier on this dataset.
We next compared the distributions of solidity and minor axis

ratio between rod-shaped and oddly shaped populations. Rod-
shaped objects are characterized high values of solidity and minor
axis ratio (Fig. 2d, e). In contrast, solidity and minor axis ratio for
oddly shaped objects take on values less than one and thus show
a much broader distribution (Fig. 2d, e insets). These results show
that, when using BCM3D 2.0, ~82% of cells are segmented with
physiologically reasonable cell shapes. The remaining 18% of cells
can then be subjected to further processing to identify and correct
the remaining segmentation errors23,24,35 and/or be subjected to
further scrutiny to determine whether they are due to aberrant
cell shapes exhibited by sick or intoxicated cells36.

Accurate BCM3D 2.0 segmentation enables multi-cell tracking
in biofilms
Simultaneous multi-cell tracking and lineage tracing are critical for
analyzing single-cell behaviors in bacterial biofilms. We asked
whether the cell segmentation performance of BCM3D 2.0 was
sufficient to enable accurate tracking of individual cells in biofilms.
To address this question, we employed a tracking-by-detection
approached using simulated biofilm images of different SBRs (Fig.
3a). We evaluated tracking accuracy, as a function of SBR, using
the widely used TRA metrics based on Acyclic Oriented Graph
Matching (AOGM)37. In acyclic-oriented graphs, cells in different
time frame are represented as vertices, and linkages between cells
from frame to frame are represented as edges. When the cells
(vertices) are placed at their actual (x,y,z) spatial coordinates, then
the cell linkages (edges) represent the branches of a spatially
resolved lineage tree (Fig. 3b). The TRA metrics quantify the
minimum number of elementary graph operations that are
needed to transform an estimated graph into a ground truth
graph. TRA_edge considers three edge operations only, while
TRA_full considers all six graph operations37.
To link the same cells across two different time points, we used

a nearest-neighbor algorithm. When using spatial distance as the
sole metric for cell linking, the AOGM tracking accuracy has a
positive correlation with SBR (Fig. 3c), which highlights the
importance of accurate cell segmentation in multi-object tracking-
by-detection38. BCM3D 2.0 enables a tracking accuracy that is
similar to the ground truth tracking accuracy (same nearest
neighbor tracking algorithm applied to the ground truth
segmentation masks) for SBRs of 1.65 and higher. We note that,
given the high cell density in this test dataset, the ground truth
tracking accuracy does not reach the optimum (100%) even with
error-free segmentation. This is due to inherent limitations in how
mother-daughter relationships are assigned. At SBR’s >1.65,
tracking accuracy decreases rapidly due to the lack of consistent
segmentation results. The importance of accurate segmentation is
clearly evidenced by the linear dependence of TRA as a function of
cell counting accuracy (Fig. 3d).
Another key factor for simultaneous multi-object tracking is the

time resolution38. The relative movement (RM) of objects from
frame-to frame is therefore a useful metric to quantify the level of
difficulty for cell tracking. The relative movement (RMi,j) in time
frame i, for a given cell j is defined as the ratio between the
distance of cell j to itself between frame i and i+ 1 and the
distance of cell j in frame i to its closest neighbor at frame i+ 1.
The <RM >metric is then the average RMi,j of all cells for each
frame39. A dataset with <RM > values of 1 or more means that any
tracking method that considers only distance (and distance-
related features) is likely to fail, whereas a dataset with a
<RM > value of less than 0.5 is considered challenging39. For the
simulated biofilm images here, RM~0.2, which indicates that the
time resolution may be good enough for single-cell tracking using
the nearest neighbor algorithm. Indeed, under these conditions,

Table 1. Quantitative comparison of single-cell level segmentation accuracy between BCM3D 1.0 and BCM3D 2.0.

Cytosolic labeling Membrane labeling

SSA* SBF1** SSA* SBF1**

BCM3D 1.0 (CNN+ LCuts) 0.796 ± 0.021 0.983 ± 0.008 0.756 ± 0.009 0.961 ± 0.007

BCM3D 2.0 0.791 ± 0.004 0.995 ± 0.001 0.773 ± 0.005 0.988 ± 0.002

Omnipose 0.599 ± 0.011 0.868 ± 0.017 0.615 ± 0.021 0.824 ± 0.025

Cellpose 2 0.566 ± 0.016 0.825 ± 0.016 0.572 ± 0.008 0.820 ± 0.009

*SSA and **SBF1 estimate how accurately the shape of a matched object compare with it of the corresponding ground truth. Here, the IoU threshold is 0.5 and
the distance error tolerance for SBF1 is

ffiffiffi
3

p
voxels. (See Methods for details). Data are presented as mean values ± one standard deviation, the best

performance (if different within error) is marked in bold.
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Fig. 2 Performance of BCM3D 2.0 on experimental biofilm images. a Principal component analysis of the segmentation objects (obtained
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many cells can be tracked for several generations (Fig. 3b).
However, even at RM~0.2, some cell division events are missed, so
that a few branches of the lineage tree are not successfully traced.
Even so, the subset of correctly detected cell division events
allows for the estimation single-cell doubling cycles in the biofilm
(Fig. 3e). To quantify these trends, we tested how time resolution
affects tracking accuracy. When the time resolution is decreased
by a factor of two and three, the TRA_edge metrics decrease from
91% to 87% and 81%, respectively. The percentage of the parent-
daughter misassignment error, quantified as the edge-correction
(EC) error over the number of total errors, increases from 1.4% to
3.6 and to 5.2 % (Fig. 3f). Taken together, these results show that
segmentation based multi-object tracking accuracy is highly
dependent on segmentation accuracy (which depends on image
SBR and cell density23), as well as time resolution. It is critical to

consider these parameters, when single-cell resolved observables,
such as cell trajectories, single-cell volume increases, and single-
cell doubling times, need to be measured.

Multi-cell tracking in the initial phase of S. oneidensis biofilm
Cell segmentation and subsequent multi-cell tracking in experi-
mentally acquired 3D images presents additional challenges that
were not modeled in the computationally simulated data. These
challenges include optical aberrations in the imaging system,
broader cell shape distributions in experimental biofilms, cell
motility, and association and dissociation dynamics of individual
cells to and from the biofilm. To determine whether the BCM3D 2.0
segmentation results enable improved multi-cell tracking using
the nearest neighbor algorithm, we manually traced a subset of
ancestor cells over the course of a 15-min 3D biofilm movie
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acquired with a time resolution of 30 s (Fig. 4a, b). Manual
determination of cell-to-cell correspondences in consecutive
image volumes generated 583 cell-cell and 3 parent-daughter
linkages. Taking this manual annotation as the reference graph,
the RM metric was determined to be ~0.2 and the TRA_edge
metric was determined to be 93.5%. Steadily increasing single-cell
volumes for four selected cells allowed us to measure growth rates
of 7.4 × 10−3, 3.8 × 10−3, 3.4 × 10−3, and 0.6 × 10−3 µm3/min (Fig.
4c). Cell division events are also readily detected by the algorithm
as a sudden decrease in cell volume. In two of the four selected
cases, cell division led to the dispersal of the daughter cell. We
found a high number of cell dispersion events resulting in the
termination of trajectories, most often right after cell division (Fig.
4c).
Although BCM3D 2.0 in combination with high-frame-rate

imaging enables accurate cell tracking, it may not be feasible to
maintain high-frame-rate volumetric imaging for extended
periods of time due to phototoxicity and photobleaching
concerns. To further test the limits of nearest neighbor tracking,
we tracked S. oneidensis biofilm growth for five hours at a time
resolution of 5 min (Fig. 4d, e). During this time period, the
number of cells increases from ~300 to ~1400 cells. The relative
cell motion in this dataset, estimated by the distances between
manually tracked cell centroids, is 0.5 ± 0.2 µm (mean ± standard
deviation, N= 5). The average spacing of the biofilm, as calculated
by the average distance of each cell to the nearest neighbor,
changes over time. The average spacing for the first frame,
estimated by the average distance to the nearest neighbor for
each cell, is 1.2 ± 0.6 µm (mean ± standard deviation, N ~300), and
is 1.1 ± 0.2 µm (mean ± standard deviation, N ~1400) for the last
frame. We manually traced a subset of founder cells over the
course of the experiment, generating 262 cell-cell and 17 parent-
daughter linkages. For this manually selected subset, the RM
metric was ~0.4 and TRA_edge metric was determined to be
80.0%. While the nearest neighbor tracking algorithm is capable of
making overall accurate cell-cell linkages for a few consecutive
frames, automated nearest neighbor tracking of the same cells for
long time periods and correctly detecting all cell division events is
not readily possible (Fig. 4f). It is, however, possible for human
annotators to track individual cells from the segmentation results
under such imaging conditions. Single-cell growth rates and
single-cell division times can then be readily extracted (Fig. 4f,
Supplementary Fig. 10, Supplementary Movie 1). The measured
growth rates are in excellent agreement with the values obtained
with high-time resolution imaging (Fig. 4c). A small number of
segmentation errors can be detected by manual tracking, as
indicated by the boxes in Fig. 4f, but these errors don’t preclude
estimations of single-cell observables. These results indicate that
quantitate information about single-cell behaviors is contained
even in low-time resolution 3D movies of bacterial biofilms. Future
work will need to focus on extracting the information as
accurately as, but faster than, a human annotator.

DISCUSSION
We expanded the BCM3D workflow with a complementary CNN-
based processing pipeline, named BCM3D 2.0, which transfers raw
3D fluorescence images to intermediate image representations
that are more amenable to conventional mathematical image
processing (specifically, seeded watershed and single- and multi-
level Otsu thresholding). Using the BCM3D 2.0 image processing
pipeline, unprecedented segmentation results are obtained,
especially for challenging datasets characterized by low SBRs
and high cell densities. BCM3D 2.0 consistently achieves better
segmentation accuracy than Cellpose 2.0 and Omnipose, as well as
our predecessor algorithm, BCM3D 1.0, which represented the
previous state-of-the-art for 3D cell segmentation in bacterial
biofilms.

We used the segmentation results provided by BCM3D 2.0 as
the input to a nearest neighbor tracking algorithm to explore the
possibility of simultaneous multi-cell tracking in 3D biofilms. We
found that accurate, automated multi-cell tracking in 3D time-
lapse movies is possible with a nearest neighbor tracking
algorithm, if the relative cell movement (RM) between consecutive
frames is small. Depending on the type of biofilm and the bacterial
species, small RM values can be achieved using moderate time
resolutions of 1–5min. However, for the motile S. oneidensis cells
imaged here, a time resolution of 5 min was insufficient for
automated nearest neighbor cell tracking in dense biofilm regions.
Tracking accuracy is reduced especially if cells undergo large and
unpredictable displacements within the biofilm, and when cells
associate or dissociate to and from the biofilm. Even so, single-cell
observables, such as growth rates and cell division times can still
be extracted based on manual tracking establishing that such
information is in fact contained in movies acquired with a time
resolution of 5 min. Because manual cell tracking is not feasible for
biofilms containing thousands of cells, future work will have to
focus on extracting this information in an automated manner,
efficiently and accurately. Machine-learning-based solutions will
likely prove to be useful in this context.
A clear experimental solution would be to image biofilms at

high time resolutions. However, every fluorescence imaging
modality is subject to trade-offs between the achievable spatial
and temporal resolution, image contrast (SBR), and phototoxicity
and photodamage. If reducing the total radiation dose delivered
to the cells is an experimental necessity, light sheet-based
microscopy approaches offer substantial advantages over confocal
microscopy32.
While BCM3D 2.0 is capable of segmenting biofilm datasets of

lower SBR than previous methods, further modifications to the
image processing pipeline may be needed to enable the tracking
of extremely light-sensitive or highly motile bacterial species.
Additional modifications could be made to further improve
segmentation accuracy for datasets with even lower SBRs than
those successfully segmented here. On the other hand, more
sophisticated tracking algorithms could be employed that
consider additional features beyond the Euclidian distances
between objects. Recently developed deep learning-based cell
trackers for both 2D and 3D data40,41 are primarily designed for
mammalian cells with unique cell shapes. These approaches utilize
additional similarity features that inform cell linking across
different frames. To what extent such approaches would improve
tracking of bacterial cells that have more homogeneous cell
shapes remains to be explored. Further benefits may also be
gained by utilizing punctate cell labeling schemes15 or adaptive
microscopy approaches, in which higher illumination intensity
frames are interspersed with lower illumination intensity frames
and the segmentation results in lower SBR frames are informed by
the more accurate results obtained in the higher SBR frames.
In summary, the ability to accurately identify and track

individual cells in dense 3D biofilms over long periods of time
will require the combination of non-invasive fluorescence micro-
scopy approaches for long-term time-lapse imaging and sophis-
ticated image analysis and multi-object tracking tools that provide
robust results even for datasets with a limited spatial and
temporal resolution and SBR. Here, we have presented an image
processing pipeline that enables improved segmentation of dense
biofilm-dwelling cells based on 3D fluorescence images of low
SBR. The feasibility of simultaneous, automated multi-cell tracking
using a simple nearest neighbor tracking algorithm was demon-
strated on high-time resolution datasets, while manual tracking
was possible on lower-time-resolution datasets. The tools devel-
oped here can thus be leveraged to improve our understanding of
how coordinated behaviors among biofilm-dwelling cells even-
tually produce the macroscopic properties of bacterial biofilms.
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METHODS
Lattice light sheet microscope imaging of bacterial biofilms
Fluorescence images of bacterial biofilms were acquired on a
home-built lattice light sheet microscope (LLSM). LLSM enables
specimen illumination with a thin light sheet derived from a 2D
optical lattice42,43; here, an intensity uniform light sheet was
produced by dithering a square lattice. The average illumination
intensity across the light sheet was less than 1W/cm2. The sub-
micrometer thickness of the light sheet is maintained over a
propagation distance of ~30 µm to achieve high resolution, high
contrast imaging of 3D specimens comparable to confocal
microscopy but with lower concomitant photobleaching and
phototoxicity. Widefield fluorescence images of illuminated planes
in the specimen are recorded on an sCMOS detector (Hamamatsu
ORCA Flash v2). 3D biofilm images were acquired by translating
the specimen through the light sheet in 200 nm step sizes using a
piezo nano-positioning stage (Mad City Labs, NanoOP100HS). The
data acquisition program is written in LabVIEW 2013 (National
Instruments).
Kanamycin-resistant S. oneidensis MR-1, constitutively expres-

sing GFP, were cultured at 30 °C overnight in LB medium with
50 μg/ml Kanamycin. Overnight cultures were diluted 100 times
into the same culture medium, grown to an optical density at
600 nm (OD600) of 0.4—1.0, and then diluted to OD600 ~ 0.05
using M9 media with 0.05% (W/V) casamino acids. Poly-l-lysine-
coated round glass coverslips with a diameter of 5 mm were put
into a 24-well plate (Falcon) and 400 μL of diluted cell culture was
added to the well. Cells were allowed to settle to the bottom of
the well and adhere to the coverslip for 1 h. After the settling
period, the coverslip was gently rinsed with M9 media to flush
away unattached cells. Then 400 μL of M9 media (0.05% casamino
acids) were added to ensure immersion of the coverslips. The well
plate was set in a 30 °C chamber for 72–96 h to allow dense
biofilms to develop. Media were exchanged every 24 h. Before
imaging, the coverslip was rinsed again with fresh M9 media. The
rinsed coverslip was then mounted onto a sample holder and
placed into the LLSM sample-basin filled with M9 media. GFP was
excited using 488 nm light sheet excitation. 3D biofilm stacks were
acquired by translating the specimen through the light sheet in
200 nm or 235 nm steps. Each 2D slice was acquired with an
exposure time of 5 ms or 10ms.
Samples for time-lapse images were prepared by the same

procedures, except imaging was started after either 24-h or 48-h
cell attachment period, and the imaging experiment was carried
out in LM medium (0.02% (W/V) yeast extract, 0.01% (W/V)
peptone, 10 mM HEPES (pH 7.4), 10 mM NaHCO3) with a lactate
concentration of 0.5 mM44. Time-lapse images were recorded
every 30 s for 15 min or 5 min for 5 h for the two datasets shown in
Fig. 4 with the same imaging parameters as detailed above.

Raw data processing
Raw 3D stacks were deskewed and rotated as described
previously45, but the deconvolution step was omitted. If necessary,
background subtraction can be applied to reduce background
signal. 3D images were rendered using the 3D Viewer plugin in
Fiji46 or ChimeraX47. Sample drift over the course of a time-lapse
imaging experiment was corrected by Correct 3D Drift48, a Fiji
plugin that performs registration by phase correlation, a
computationally efficient method to determine translational shifts
between images at two different time points.

Generation of simulated biofilm images
Data for CNNs training was computationally generated as
described previously23. Briefly, CellModeller49, an individual-
based computational model of biofilm growth, was used to
simulate growth and division of individual rod-shaped cells in a

population (Fig. 5a). A minimum distance criterion between cells is
imposed at each time point to alleviate cellular collisions that are
due to cell growth. We chose cell diameter and cell length (d, l)
parameters consistent with the bacterial species under investiga-
tion, namely (1 μm, 3 μm) for E. coli50, and (0.6 μm, 2 μm) for S.
oneidensis51. Training data should closely represent the experi-
mental data to ensure optimal segmentation results. Unrepresen-
tative cell diameter and cell length parameters can result in over-
or under-segmentation errors and the predictions of non-
physiological cell shapes (Supplementary Fig. 1). 3D fluorescence
intensity images (Fig. 5b) were generated by convolving randomly
positioned fluorophores in the cytoplasm or the membranes of
simulated cells (Fig. 5c, d) with experimentally measured point
spread functions (PSFs), and then adding experimentally mea-
sured background and noise (Poisson detection noise, based on
the summed background and signal intensities, as well as
Gaussian read noise, experimentally calibrated for our detector
at 3.04 photons per pixel on average)52.
The fluorescence signal intensity in the simulated images was

adjusted to match the SBRs of experimentally acquired data. To
estimate the SBRs of both simulated and experimental images, we
manually selected 10 ‘signal’ and 10 ‘background’ regions in the
images using the Oval tool in Fiji and calculated their means
respectively. A ‘signal’ region is defined to be any region that
contains only pixels within a cell (foreground) and a ‘background’
region contains only pixels outside cells, but in regions that are
close to the cells. These regions are judged by the researchers
rather than by any computer algorithm to ensure accuracy. The
SBR was then calculated by dividing the mean signal intensity by
the mean background intensity. Consistent with our previous
results (Zhang et al, Nature Communications, 2020), the SBR is a
good metric quantifying “difficulty to segment” in simulated data,
which has homogeneous cells densities and the exact same
biofilm architectures (i.e., cell positions). For heterogeneous cell
densities in experimental biofilms, the SBR can vary considerably
through space. We, therefore, quantify the SBR in experimental
images locally at regions of the highest cell density, but we note
that this metric should only be used qualitatively and we refrain
from making any direct, quantitative comparison of segmentation
performance between biofilms of different architectures. To
estimate the local density of a biofilm, the image was partitioned
into several 3D tiles 64 by 64 by 8 voxels in size, and the total cell
volume contained in each tile was divided by the tile volume. The
reported cell density was computed as the average of the 10
densest tiles for each dataset.

Generation of intermediate image representations
To generate ‘distance to nearest cell exterior’ images (Fig. 5e,
Supplementary Fig. 2) from ground truth data, the Euclidean
distance of each voxel inside a cell to the nearest voxel not
belonging to that cell was calculated. The so-obtained distances
were then normalized to the maximum value of that cell
(Supplementary Fig. 2c). In order to obtain a steeper gradient in
distance values, the distance values were additionally raised to the
third power (Supplementary Fig. 2d), so that the resulting images
show highly peaked intensity near the cell center. In the final step,
the ‘distance to nearest cell exterior’ images were smoothed by
Gaussian blurring (kernel size= 5 voxels in each dimension)
(Supplementary Fig. 2e).
To help distinguish touching cells, we calculated a second

image representation, the ‘proximity enhanced cell boundary’
image (Fig. 5f, Supplementary Fig. 2). First, we subtracted the
normalized distances to the nearest voxel not belonging to this
cell (Supplementary Fig. 2c) from the binary map (Supplementary
Fig. 2f). Second, we calculated the inverse of the Euclidean
distance of each voxel inside a cell to the nearest voxel belonging
to another cell, an intermediate image representation that has
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been proven useful to prevent objects merging in 2D27

(Supplementary Fig. 2g). These two intermediate images were
then multiplied together (Supplementary Fig. 2h) and small holes
in the resulting images (Supplementary Fig. 2h inset) were filled
using grayscale closing (Supplementary Fig. 2i inset). The resulting
intermediate images provide a complete boundary of an object
but also highlights whether the boundary is in close proximity to
any other objects. Compared to previous methods that only
provide a complete boundary or only provide boundary areas that
are close to any other objects, this new intermediate image
representation provides a more informative boundary representa-
tion. In a final step, the ‘proximity enhanced cell boundary’ images
were smoothed by Gaussian blurring (kernel size= 5 voxels in
each dimension) (Supplementary Fig. 2i).

Training the CNN
To generate the above-mentioned intermediate image represen-
tations from experimental data, we trained 3D U-Net-based CNNs
with residual blocks using the CSBDeep Python package19.
Residual blocks allow the model to internally predict the residual
with regard to inputs for each layer during training. This strategy
provides better performance, because solvers are more efficient in
solving residual functions than unreferenced functions, and it
helps alleviate vanishing or exploding gradients problems for
deep neural networks53. We employed a network architecture
depth of 2, a convolution kernel size of 3, 32 initial feature maps,
and a linear activation function in the last layer. Increasing U-Net
depth or numbers of initial features didn’t produce superior results
for our test cases (Supplementary Fig. 5). To achieve robust
performance, we trained this network using ten to twenty

c d

a b

fe

Fig. 5 Simulation of fluorescent biofilms images and intermediate image representations. a Cell arrangements obtained by CellModeller.
b Simulated 3D fluorescence image based on the cell arrangements in a. c Ground truth information of a 2D slice. Different cells are shown in
different colors and intercellular spaces (background voxels) are displayed in black. d 2D slices of the simulated fluorescence image
corresponding to the ground truth shown in c. The upper panel shows cells containing cytosolic fluorophores, the lower panel shows cells
with fluorescently stained membranes. e, f Intermediate image representations generated from the ground truth information shown in c. See
text for details. Scale bars are 5 µm.
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simulated biofilm images with randomly selected cell densities
and SBR. To ensure the broad applicability of these networks, half
of these images were biofilms containing cells expressing
cytosolic fluorescence and the other half were biofilms containing
membrane-stained cells (see Fig. 5d). The loss function was taken
as the mean absolute error (MAE) between the generated and the
target images. The networks were trained for 100 epochs with 100
parameter update steps per epoch and an initial learning rate
0.0004 (Supplementary Fig. 6). The learning rate is reduced by half
if the validation loss is not decreasing over 10 epochs. We selected
the best weights based on performances on validation set for all
the processing steps described below. Using these parameters, it
took approximately 1 h to train the CNNs on an NVIDIA Tesla V100
GPU with 32 GB memory.
To obtain instance segmentation results from intermediate

image representations predicted by trained CNNs, we applied
single- and multilevel Otsu thresholding29,54, and seeded
watershed28 (scikit-image Python library55, Supplementary Figs.
3 and 4). The reader is referred to the Supplementary Methods for
detailed, step-by-step explanations.
To test whether segmentation objects have physiologically

reasonable cell shapes, we separately trained a 3D CNNs-based
classification model using tensorflow 2.0. We adapted a network
architecture from Zunair et.al.56; mainly includes three 3D
convolutional layers, one global average pooling layer and a
sigmoid activation function in the last layer. To achieve robust
performance, we trained this network using 733 manually
confirmed segmentation objects from experimental data (411
reasonable shaped objects, 322 oddly shaped objects). Training
data were augmented by rotation and flip. The loss function was
taken as the binary cross entropy between the model output and
the corresponding target value. The networks were trained for 100
epochs with a batch size of 5 and an initial learning rate 0.0002.
The learning rate is reduced by a half if the validation loss is not
decreasing over 15 epochs. Using these parameters, it took
~17mins to train the CNNs on a NVIDIA Tesla V100 GPU with 32
GB memory.

Tracking
Simpletracker in MATLAB was used to build tracking graphs and
spatially resolved lineage trees57. Simpletracker implements the
Hungarian algorithm and nearest neighbor trackers for particle
tracking that links particles between frames in 2D or 3D. We used
1 µm and 1.5 µm as the maximum distance threshold for cell
linking for simulated and experimental data, respectively. We used
the nearest neighbor algorithm to associate the centroids of
segmented objects in subsequent frames, such that the closer
pairs of centroids are linked first. In order to determine a cell
division event, a distance threshold of 1 µm and 1.5 µm for
simulated and experimental data, respectively, a cell volume
threshold of 1.5 (parent cell should be 1.5 times larger than the
daughter cell), and a cell length threshold of 1.5 (parent cell
should be 1.5 times longer than the daughter cell), were used to
determine parent-daughter relationships between cell pairs on
consecutive frames.

Performance evaluation
Segmentation accuracy was quantified as cell counting accuracy
(CA) and cell shape estimation accuracy. The cell CA was
calculated as previously described23:

CA ¼ TP
TPþ FPþ FN

where, TP is the number of truth positive objects, FP is the number
of false-positive objects, and FN is the number of false-positive
objects. Cell shape estimation is evaluated by two separate
measures. Single-cell segmentation accuracy (SSA) takes the mean

Intersection-over-Union (IoU) value (aka the Jaccard index58) over
segments that have a matching ground truth/manual annotation
object:

SSA ¼ 1
Nmatch

XNmatch

i

Segi \ GTij j
Segi ∪GTij j

where, Segi \ GTij j is volume of overlap between the predicted
object and the ground truth object, and Segi ∪GTij j is the volume
enclosed by both the predicted object and the ground truth
object. We note that the SSA metric can take on high values even
if the shape of a segmented object does not accurately represent
the shape of the corresponding ground truth object. For example,
a predicted round object with a diameter of 20 covered by a
ground truth square object with a length of 20 gives a 0.8 IoU
value, which could be interpreted as good performance. From a
biological perspective, however, this would signify a substantial
inaccuracy in shape estimation. To measure differences in cell
shape in a more discriminating way, we additionally computed a
single-cell boundary F1 score (SBF1)35. The SBF1 of the above-
mentioned square vs circular object example is 0.67. The
SBF1 score is computed as

SBF1 ¼ 1
Nmatch

XNmatch

i

2 � prcecisioni � recalli
prcecisioni þ recalli

where precision is the ratio of matching boundary points in a
matched segmentation object to the total points of its boundary.
Similarly, recall is the ratio of the matching boundary points to the
total points of ground truth boundary. According to the definition
of boundary F1 score59, a distance error tolerance is used to
decide whether a point on the predicted boundary has a match
on the ground truth boundary. For our 3D data, we use

ffiffiffi
3

p
voxels.

To quantify tracking accuracy, we used the AOGM37. The AOGM
value is calculated as the weighted sum of the number of graph
operations required to convert the estimated graph to the ground
truth graph, i.e.:

AOGM ¼ wNSNSþ wFNFN þ wFPFP þ wEDEDþ wEAEAþ wECEC

The tracking accuracy can then be computed using a normal-
ized AOGM value, where AOGM0 is the number of operations to
build the ground truth graph from an empty graph:

TRA ¼ 1�minðAOGM;AOGM0Þ=AOGM0

There are three types of graph operations that are associated
with detection errors: the number of false negatives (FN), the
number of false positives (FP), and the number of missed splits
(NS: m reference cells (m > 1) are assigned to a single segmented
cell); and three types of graph operations that are associated with
object linking: edge deletion (ED), addition (EA), and alteration of
the semantics of an edge (EC: The semantics of an edge can either
represent the same cells over time or represent a parent-daughter
relationship). To focus on object matching over time (i.e., the
association performance of the algorithm), we used an equally
weighted sum of the lowest number of graph operations on edges
only (TRA_edge). To give a more comprehensive view, we used an
equally weighted sum of the number of graph operations on all
six operations (TRA_full).
To estimate tracking accuracy for experimental data, we

manually traced a small subset (n= 25) ancestor cells over time
based on BCM3D 2.0 segmentation masks. Two researchers
performed tracking independently, manually determining
parent-daughter relationships within the lineages originating
from the ancestor cells. This lineage information was then used
to compute TRA_edge.
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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